作AE垂直BC于E,
设BC=6k,则BD=2k,DC=4k,DE=k,
因为△DAE∽△DCH,所以DA/k=4k/DH,得到DA*DH=4k*k;
△BDH与△ADB,有∠BDH=∠ADB,而BD/AD=2k/AD,DH/DB=DH/2k,
因DA*DH=4k*k,所以两比值相等,所以得到△BDH∽△ADB,所以∠BAD=∠HBD=∠HBC
作AE垂直BC于E,
设BC=6k,则BD=2k,DC=4k,DE=k,
因为△DAE∽△DCH,所以DA/k=4k/DH,得到DA*DH=4k*k;
△BDH与△ADB,有∠BDH=∠ADB,而BD/AD=2k/AD,DH/DB=DH/2k,
因DA*DH=4k*k,所以两比值相等,所以得到△BDH∽△ADB,所以∠BAD=∠HBD=∠HBC