答:一、推导距离表达式设距离是d,则:d²最小的条件既是d最小的条件,下面求d²表达式:d² = (x -m)² + (y - 0)²d² = x² -2mx + m² + y²由x² + 2y² = 2 可得 y² = 1 - x²/2d² = x² -2mx + m² + 1 - x²/2d² = x²/2 - 2mx + m² + 1d² = 1/2(x² -4mx) + m² + 1d² = 1/2(x -2m)² -2m² + m² + 1d² = 1/2(x -2m)² +1 -m²二、讨论距离最小条件第①种情况:x - 2m = 0:d² = 1 - m²由于 -√2 <= x <= √2,所以:-√2/2 <= m <= √2/2即:|m| <= √2/2第②种情况: |m| > √2/2:这时,x - 2m ≠ 0,如d²要求最小,则要求(x - 2m)²最小,所以要求|x-2m|最小.当m>+√2/2时,2m-x >0,所以|x-2m|=2m-x,这个值最小则要求x最大,x=√2,即:2m -√2当m0,所以|x-2m|=-2m+x,这个值最小则要求x最小,x=-√2,即:-2m +√2总之两种情况:(x - 2m)² =(2m - √2)²d² = 1/2(x -2m)² +1 - m² d² = 1/2(2m - √2)² +1 - m²d² = 2m² -2√2m + 1 + 1 -m²d² = m² -2√2m+ 2d² = (m - √2)²综上:① 当 |m| <=√2/2时,最小距离d=√(1 - m²)② 当 |m| >√2/2时,最小距离d=|m - √2|---完---
求点M(m,0)(m≠±√2)与椭圆x^2+2y^2=2上的点的距离的最小值.
1个回答
相关问题
-
在椭圆(x^2)/9+(y^2)/4=1上求一点M,使点M 点M到直线x+2y-10=0的距离最小,求出最小距离.
-
M(2,0)是椭圆X^2/36+Y^2/20=1长轴AB上的一点(A是左端点),求椭圆上的点到M的距离的最小值
-
已知椭圆x^2/36+y^2/20=1的长轴上一定点M(a,0),常数a>0,求椭圆上的点到点M距离d的最小值
-
求椭圆X^2/4 +Y^2=1上到点M(1,0)距离最小的点P的坐标
-
2道椭圆极值题!(1) 求这个椭圆上的点M到定点P(0,m)的距离最大值 (2)已知椭圆x^2/48+y^2/b^2=1
-
已知点p的抛物线y2=10x上的动点,求点p与M(m,0)的距离最小值
-
F(C,0)为椭圆X^2/A^2+Y^2/B^2的右焦点,F与椭圆上点的最大值,最小值分别为m,n,则椭圆与点F的距离等
-
F(c,0)是椭圆x2a2+y2b2=1(a>b>0)的一个焦点,F与椭圆上点的距离的最大值为m,最小值为n,则椭圆上与
-
已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F(c,0),若F与椭圆上的点的最大距离、最小距离分别为M、m,则
-
若椭圆x^2/m^2+y^2/n^2=1(m,n>0)经过点(3,1),求m^2+n^2的值