(70多7•门头沟区得模)金属在日常生活中随处可见,研究金属的性质可以更好地利用金属.
0
0

1个回答

  • 解题思路:化简集合A、集合B,根据a=1时,A∩B≠Φ,可得b=0 满足条件,当b≠0时,应有 b-1<-1<b+1,或 b-1<1<b+1,

    分别求出b的范围后,再取并集,即得所求.

    ∵A={x|

    x−1

    x+1<0}={x|-1<x<1},

    B={x||x-b|<a}={x|b-a<x<b+a},

    ∵“a=1”是“A∩B≠Φ”的充分条件,∴{x|-1<x<1}∩{x|b-1<x<b+1}≠Φ,

    当b=0时,A=B,满足条件.

    当b≠0时,应有 b-1<-1<b+1,或 b-1<1<b+1.

    解得-2<b<0,或 0<b<2.

    综上可得-2<b<2,

    故答案为 (-2,2).

    点评:

    本题考点: 绝对值不等式;必要条件、充分条件与充要条件的判断;其他不等式的解法.

    考点点评: 本题主要考查绝对值不等式的解法,分式不等式的解法,体现了分类讨论的数学思想,属于中档题.