(1)因为an+Sn=n (1)
所以an+1+sn+1=n+1(n+1是下标) (2)
(2)-(1),整理得2(an+1-1)=an-1(n+1是下标)
由an+Sn=n可知a1=1/2
则a1-1=-1/2
因为an-1是等比数列
所以an-1=(-1/2)*(1/2)^(n-1)
所以an=1-(1/2)^n
(2)因为bn=an/(2^n)=(1/2)^n-(1/4)^n
所以Tn=1-(1/2)^n-[1/4*(1-(1/4)^n)/(1-1/4)]=2/3-[1-(1/2)^n/3]*(1/2)^n
因为1-(1/2)^n/3>0,(1/2)^n>0
所以Tn