ln(x+y)=xy^2+sinx
直接对上面这个方程求导
左边 = [ln(x+y)]'
=[1/(x+y)] * (x+y)'
=[1/(x+y)] * (1 + y')
右边 = [xy^2+sinx]'
=(xy^2)' + (sinx)'
=x*(y^2)' + x' * y^2 + cosx
= x*2y*y' + y^2 + cosx
因此 (1+y')/(x+y) = 2xy*y' + y^2 + cosx
以 x=0 代如原方程,以求得 y(x=0)的值
ln(0+y) = 0*y^2 + sin0
lny = 0
y = 1
即在 x=0处,y=1
以 x=0 和 y=1 代入求导后的方程中
(1+y')/(0+1) = 2*0*1*y' + 1^2 + cos0
y' = 2
即在 x=0 处 dy/dx = 2