判断函数f(x)=x/(x^2-1在区间(-1,1)上的单调性,并给出证明

1个回答

  • 判断:

    f(x) = x/(x^2-1)

    f'(x) = {(x^2-1)*1 - x*2x}/(x^2-1)^2 = -(x^2+1)/(x^2-1)^2 <0,函数在定义域上单调减

    分母不为零,x≠±1

    在区间(-1,1)单调减

    或者:f(x) = x/(x^2-1)= 1/(x-1/x)

    在定义域上x单调增,1/x单调减,x-1/x单调增,1/(x-1/x)单调减,

    函数在定义域上单调减

    证明:

    令-1<x1<x2<1

    f(x2) - f(x1) = x2/(x2^2-1) - x1/(x1^2-1)

    = { x2(x1^2-1) - x1(x2^2-1) } / { (x2^2-1) (x1^2-1) }

    = (x1^2x2-x2-x1x2^2+x1) / { (x2^2-1) (x1^2-1) }

    = (x1^2x2-x1x2^2+x1-x2) / { (x2^2-1) (x1^2-1) }

    = {x1x2(x1-x2)+(x1-x2)} / { (x2^2-1) (x1^2-1) }

    = (x1-x2)(x1x2x1+1) / { (x2^2-1) (x1^2-1) }

    ∵-1<x1<x2<1

    ∴(x1-x2)<0;

    -1<x1x2<1,x1x2x1+1>0;

    x2^2-1<0,x1^2-1<0

    ∴(x1-x2)(x1x2x1+1) / { (x2^2-1) (x1^2-1) }<0

    ∴f(x2) < f(x1) ,得证