常规方法就是常数变易法
不过根据这题的具体形式 有巧法
原式可化为
xdx+ydx-xdy=0
因为d(y/x)=(ydx-xdy)/x^2
所以ydx-xdy=x^2*d(y/x)代入得
xdx=-x^2*d(y/x)
dx/x=-d(y/x)
两边积分
ln|x|+C1=-y/x+C2
即x*e^(y/x)=C
常规方法就是常数变易法
不过根据这题的具体形式 有巧法
原式可化为
xdx+ydx-xdy=0
因为d(y/x)=(ydx-xdy)/x^2
所以ydx-xdy=x^2*d(y/x)代入得
xdx=-x^2*d(y/x)
dx/x=-d(y/x)
两边积分
ln|x|+C1=-y/x+C2
即x*e^(y/x)=C