已知数列an bn的通项an bn 满足 bn=an乘2的n次方 且数列an的前n项和sn=n2次方-2n

1个回答

  • 数列an的前n项和Sn=n^2-2n

    n=1时

    a1=S1=1-2=-1

    n>=2时

    an=Sn-S(n-1)=(n^2-2n)-((n-1)^2-2(n-1))

    =2n-3

    n=1时,满足an=2n-3

    ∴an=2n-3

    (2)

    bn=an*2^n

    =(2n-3)*2^n

    b1=-1*2^1

    b2=1*2^2

    b3=3*2^3

    .

    bn=(2n-3)*2^n

    错位相减法

    Tn=b1+b2+b3+.+bn

    =-1*2^1+1*2^2+3*2^3+.+(2n-3)*2^n

    2Tn= -1*2^2+1*2^3+3*2^4+.+(2n-1)*2^n+(2n-3)*2^(n+1)

    Tn-2Tn=-1*2^1+2*2^2+2*2^3+.+2*2^n-(2n-3)*2^(n+1)

    -2Tn=-2+2(2^2+2^3+.+2^n)-(2n-3)*2^(n+1)

    -2Tn=-2+2*(2^2-2^n*2)/(1-2)-(2n-3)*2^(n+1).等比数列求和公式

    -2Tn=-2+2*(2^(n+1)-4)-(2n-3)*2^(n+1)

    Tn=1-(2^(n+1)-4)+(2n-3)*2^n

    =5+(2n-5)*2^n

    验证

    n=1,b1=T1=5+(-3)*2=-1

    成立