先化解log1/2 18如下:
log1/2 18 = - log2 18 = -(log2 (2*3^2))
= -(log2 2 + 2*log2 3 )
= -1 - 2* log2 3
于是有:
F(log1/2 18) = F(-1- 2* (log2 3) )
又由已知:
F(x+2) = -F(x)
F(x) = -F(x+2)
故
F(-1- 2*(log2 3)) = -F(2-1-2*(log2 3))
= F(2+2-1-2*(log2 3))
= F(3-2*(log2 3) )
= F(log2 8/9)
由于log2 8/9在区间(-1,0)
所以要求F(x) 在区间内的表达式
由其奇偶性可得
F(x) = -F(-x)
故当x 在(-1,0)时
F(x) = -2^(-x)
故F(log2 8/9) = -2^(log2 8/9) = -8/9