(1)
(1)
AB的中点设为Q(xq,yq),
则:xq=(-3+1)/2=-1
yq=(0+0)/2=0
又AB是在x轴上,所以过Q并垂直AB的线是竖直线,所以AB的垂直平分线是x=-1
圆心C实际就是这条直线和y=x+1的交点,因此xc=-1
=》yc=-1+1=0,圆心C也在x上
半径=AC=-1+3=2,
圆方程是:(x+1)^2+y^2=4
(2)
设N的坐标是(xn,yn),G的坐标为(x,y)
则:
x=(3+xn)/2
y=(4+yn)/2
=>xn=2x-3
yn=2y-4
代入圆C的方程=》
(2x-3+1)^2+(2y-4)^2=4
=>(x-1)^2+(y-2)^2=1
(3)假设存在这样的圆,那么有:
因为PQ是直径,所以OPQ是直角三角形
设L为y=x+b
两个交点分别是(x1,y1),(x2,y2),
那么PQ^2=2*(x2-x1)^2=2x1^2+2x2^2-4x1x2
OP^2=x1^2+y1^2=x1^2+(x1+b)^2=2x1^2+2bx1+b^2
OQ^2=x2^2+y2^2=x2^2+(x^2+b)^2=2x2^2+2bx2+b^2
PQ^2=OP^2+OQ^2
=》2x1^2+2x2^2-4x1x2=2x1^2+2x2^2+2b(x1+x2)+2b^2
=>2b*(x1+x2)+4x1x2+2b^2=0 (i)
=>(x-1)^2+(x+b-2)^2=1
=>2x^2+(2b-6)x+(b-2)^2=0
=>x1+x2=3-b,x1x2=(b-2)^2/2 (ii)
(ii)代入(i)
=>2b*(3-b)+2*(b-2)^2+2b^2=0
=>2b^2-2b+8=0
判别式=4-4*2*8=-60