a,b,c,d>0 证(a/(b+2c+3d))+(b/(c+2d+3a))+(c/d+2a+3b))+(d/(a+2b

1个回答

  • 根据均值不等式:

    ab≤(a²+b²)/2

    ac≤(a²+c²)/2

    ad≤(a²+d²)/2

    bc≤(b²+c²)/2

    bd≤(b²+d²)/2

    cd≤(c²+d²)/2

    以上六式相加:ab+ac+ad+bc+bd+cd≤3(a²+b²+c²+d²)/2

    即:a²+b²+c²+d²≥(2/3)(ab+ac+ad+bc+bd+cd)

    ∴(a+b+c+d)²=a²+b²+c²+d²+2(ab+ac+ad+bc+bd+cd)≥(2/3+2)(ab+ac+ad+bc+bd+cd)

    即:ab+ac+ad+bc+bd+cd≤(3/8)(a+b+c+d)²

    于是a(b+2c+3d)+b(c+2d+3a)+c(d+2a+3b)+d(a+2b+3c)=4(ab+ac+ad+bc+bd+cd)

    ≤(3/2)(a+b+c+d)²

    根据柯西不等式:

    [a/(b+2c+3d)+b/(c+2d+3a)+c/(d+2a+3b)+d/(a+2b+3c)]·[a(b+2c+3d)+b(c+2d+3a)+c(d+2a+3b)+d(a+2b+3c)]≥(a+b+c+d)²

    故(a+b+c+d)²≤[a/(b+2c+3d)+b/(c+2d+3a)+c/(d+2a+3b)+d/(a+2b+3c)]·[a(b+2c+3d)+b(c+2d+3a)+c(d+2a+3b)+d(a+2b+3c)]

    ≤[a/(b+2c+3d)+b/(c+2d+3a)+c/(d+2a+3b)+d/(a+2b+3c)]·[(3/2)(a+b+c+d)²]

    即a/(b+2c+3d)+b/(c+2d+3a)+c/(d+2a+3b)+d/(a+2b+3c)≥2/3