证明:首先介绍两个立方展开公式:
(m+n)³=m³+3m²n+3n²m+n³
(m-n)³=m³-3m²n+3n²m-n³
则在本题中
x-y=[a^(1/3)-b^(1/3)]³
x+y=[a^(1/3)+b^(1/3)]³
原式=[a^(1/3)-b^(1/3)]²+[a^(1/3)+b^(1/3)]²
=2[a^(2/3)+b^(2/3)]=8
与x,y取值无关,证毕;
证明:首先介绍两个立方展开公式:
(m+n)³=m³+3m²n+3n²m+n³
(m-n)³=m³-3m²n+3n²m-n³
则在本题中
x-y=[a^(1/3)-b^(1/3)]³
x+y=[a^(1/3)+b^(1/3)]³
原式=[a^(1/3)-b^(1/3)]²+[a^(1/3)+b^(1/3)]²
=2[a^(2/3)+b^(2/3)]=8
与x,y取值无关,证毕;