如图所示,物体以120J的初动能从斜面底端向上运动,当它通过斜面某一点M时,其动能减少80J,机械能减少32J,如果物体

3个回答

  • 解题思路:运用动能定理列出动能的变化和总功的等式,运用除了重力之外的力所做的功量度机械能的变化关系列出等式,两者结合去解决问题.

    运用动能定理分析得出:

    物体损失的动能等于物体克服合外力做的功(包括克服重力做功和克服摩擦阻力做功),

    损失的动能为:△Ek=mgLsinθ+fL=(mgsinθ+f)L①

    损失的机械能等于克服摩擦阻力做功,△E=fL②

    由[①/②]得:

    △Ek

    △E=[mgsinθ+f/f]=常数,与L无关,由题意知此常数为2.5.

    则物体上升到最高点时,动能为0,即动能减少了120J,那么损失的机械能为48J,

    那么物体返回到底端,物体又要损失的机械能为48J,故物体从开始到返回原处总共机械能损失96J,

    因而它返回A点的动能为24J.

    故选B.

    点评:

    本题考点: 机械能守恒定律.

    考点点评: 解题的关键在于能够熟悉各种形式的能量转化通过什么力做功来量度,并能加以运用列出等式关系.