F(1,0),准线x=-1,则AF,BF,CF分别等于A,B,C到准线的距离.由条件知F是三角形ABC的重心.由于是选择题,而且题目并没有限制三角形ABC的形状,所以采用特殊化法,考虑最特殊的情况:假设A与原点O重合,BC垂直于X轴,则B,C的横坐标相等.由重心公式可以知道,B,C的横坐标之和等于3,所以横坐标为3/2,到准线的距离都是5/2,而A到准线的距离是1,所以所求结果为6
设F为抛物线y^2=4x的焦点,ABC抛物线上的三点,若FA+FB+FC=0(向量),证明:三角形ABC不可能是直角三角
1个回答
相关问题
-
设F为抛物线y^2=4x的焦点,ABC抛物线上的三点,若FA+FB+FC=0(向量),证明:三角形ABC不可能是直角三角
-
设F为抛物线Y^2=4X的焦点,ABC为该抛物线上的三点,若向量FA+FB+FC=0向量,则|FA|+|FB|+|FC|
-
抛物线与向量F为抛物线 y^2=4x 的焦点,A,B,C为该抛物线上三点,若向量FA+向量FB+向量FC=0则FA+FB
-
抛物线y^2=4x,F为焦点,A,B,C ,为抛物线上的点,若向量FA+向量FC+向量FC=0,则,/FA/+/FB/+
-
(数学向量)设F为抛物线y^2=4x的焦点,A,B,C为该抛物线上三点,若向量FA+向量FB+向量FC=0向量.
-
设F为抛物线y^2=2px(p>0)的焦点,ABC为抛物线上三点,若向量FA+向量FB+向量FC=0,求这三向量的模的和
-
1.设F为抛物线 y^2=4x 的焦点,A、B、C为抛物线上3点,若FA+FB+F=0 (是向量) 则|FA|+|FB|
-
抛物线中的向量问题已知抛物线y^2=4x 的焦点为F,A 、B 、C是抛物线上三点,若FA+FB+FC=0 (都表示向量
-
高二数学,抛物线y方=4x,焦点为F,△ABC顶点均在上面,向量FA+向量FB+向量FC=0向量,向量FA的模+向量FB
-
椭圆X²∕4+Y²=1的右焦点为F,A,B,C为该椭圆上三点,若向量FA+向量FB+向量FC=0向量