斜率分别是k和-1/k
则L1
y-1=k(x-3)
y=0,x=(3k-1)/k
L2
y-1=-(1/k)(x-3)
x=0
y=(k+3)/k
所以A((3k-1)/k,0),B(0,(k+3)/k)
中点则x=[(3k-1)/k+0]/2
y=[0+(k+3)/k]/2
2x=(3k-1)/k
2y=(k+3)/k
所以2x-6y=(3k-1-3k-9)/k=-10/k
因为y-1=k(x-3)
k=(y-1)/(x-3)
所以(2x-6y)(y-1)=-10(x-3)
2xy-2x-6y²+6y=-10x+30
3y²-xy-4x-3y+15=0