L1与L2过点M(3,1)并且互相垂直分别交X 轴A Y轴B 线段AB中点Q 求Q的移动轨迹

1个回答

  • 斜率分别是k和-1/k

    则L1

    y-1=k(x-3)

    y=0,x=(3k-1)/k

    L2

    y-1=-(1/k)(x-3)

    x=0

    y=(k+3)/k

    所以A((3k-1)/k,0),B(0,(k+3)/k)

    中点则x=[(3k-1)/k+0]/2

    y=[0+(k+3)/k]/2

    2x=(3k-1)/k

    2y=(k+3)/k

    所以2x-6y=(3k-1-3k-9)/k=-10/k

    因为y-1=k(x-3)

    k=(y-1)/(x-3)

    所以(2x-6y)(y-1)=-10(x-3)

    2xy-2x-6y²+6y=-10x+30

    3y²-xy-4x-3y+15=0