证:已知a+b+c=1,a,b,c,属于正实数,
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0,
b+c≥2√(bc),
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理:
(1/b-1)≥2√(ac)/b,
(1/c-1)≥2√(ab)/c,
故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)*(c^2)]/(abc)
=8
∴(1/a-1)*(1/b-1)*(1/c-1)≥8