同意上两楼
大一数学证明题f(x)在[a,b]上连续 ,若在[a,b]上f(x)≥0,且f(x)dx积分在[a,b]上为零,则在[a
4个回答
相关问题
-
求定积分做法设f(x)在区间[a,b]上连续,且f(x)>0,证明在a到b的积分f(x)dx.dx/f(x)>=(b-a
-
定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
-
零点个数的证明,追分设函数f(x)在[a,b]上连续,证明:1)若从a到b积分f(x)dx=0,则f(x)在(a,b)内
-
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
-
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
-
f(x)在(a,b)上二阶可导 f''(x)>0 证明 :f(x)dx在a-b上
-
若f(x),g(x)在[a,b] 上连续,证明max( f(x) ,g(x ))在[a,b]上连续
-
设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左
-
设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导
-
设f(x)在(a,b)上可导,且f'(x)单调,证明f'(x)在(a,b)上连续