1
因为 CE⊥AB,BD⊥AC,三角形内角和为180°
所以 ∠ABP = 180° - ∠BAC - 90°
∠ACQ = 180° - ∠BAC - 90°
所以 ∠ABP=∠ACQ
2
因为 AB=CQ,BP=AC,∠ABP=∠ACQ
所以 △ABP≌△QCA
所以 AP=AQ,∠QAC=∠APB(AP与BP的夹角等于QA与CA的夹角)
又因为 BP⊥CA
所以 AP⊥QA
1
因为 CE⊥AB,BD⊥AC,三角形内角和为180°
所以 ∠ABP = 180° - ∠BAC - 90°
∠ACQ = 180° - ∠BAC - 90°
所以 ∠ABP=∠ACQ
2
因为 AB=CQ,BP=AC,∠ABP=∠ACQ
所以 △ABP≌△QCA
所以 AP=AQ,∠QAC=∠APB(AP与BP的夹角等于QA与CA的夹角)
又因为 BP⊥CA
所以 AP⊥QA