因为PM⊥AD,PN⊥CD PM=PN 且PD=PD 所以三角形PDM≌△PDN(HL),所以角ADP=角CDP 所以角ADB=角CDB 因为AD=CD BD=BD 所以三角形ADB≌△CDB,所以角ABP=角CBP 即BP为角ABC的角平分线 又因为PE⊥BA,PF⊥BC,所以PE=PF 角平分线上的点到两边的距离相等
如图,点D,P在∠ABC内,点P在BD的延长线上,PM⊥AD,PN⊥CD,垂足分别为M,N,PM=PN,AD=CD,PE
1个回答
相关问题
-
点D、P在角ABC内,点P在BD的延长线上,PM垂直AD,PN垂直CD,锤足分别为点M、N,PM=PN,AD=CD,PE
-
先证全等,如图,点D.P在∠ABC内,点P在BD的延长线上,PM⊥AD,PN⊥CD,垂足分别为点M.N,PM=PN,AD
-
如图,BD是∠ABC的平分线,BA=BC,点P在BD的延长线,PM⊥AD,PN⊥CD,点M\N分为垂足,求证:PM=PN
-
如图所示,已知BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,点M,N分别为垂足,且PM=PN
-
如图,已知AD=CD,点P在BD上,PM垂直于AD,PN垂直于CD垂足分别是M、N且PM=PN 求证:BD平分角ABC
-
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=P
-
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=P
-
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=P
-
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=P
-
已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=P