解题思路:(1)根据角平分线的性质可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可得∠BAC+∠ACD=180,进而得到AB∥CD;
(2)过E作EF∥AB,证明EF∥∥AB∥CD,可得∠BAE=∠AEF,∠FEC=∠DCE,再由∠E=90°,可得∠BAE+∠ECD=90°,进而得到∠BAE+[1/2]∠MCD=90°;
(3)根据平行线的性质结合三角形内角和定理可得∠CPQ+∠CQP与∠BAC数量关系.
证明:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180,
∴AB∥CD;
(2)∠BAE+[1/2]∠MCD=90°;
过E作EF∥AB,
∵AB∥CD,
∴EF∥∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+[1/2]∠MCD=90°;
(3)如图3:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC;
如图4:∵AB∥CD,
∴∠BAC=∠ACQ
∵∠PQC+∠PCQ+∠ACQ=180°,
∴∠PQC+∠QPC+∠BAC=180°.
点评:
本题考点: 平行线的判定与性质.
考点点评: 此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角、同位角相等,同旁内角互补.