如图,问号处是怎么得出来的?

1个回答

  • 把 -1/[(cosx+2)*(cosx+1)*(-cosx+1)]看成:A/(cosx+2)+B/(cosx+1)+C/(cosx+1)三个多项式之和

    -1=[A/(cosx+2)+B/(cosx+1)+C/(cosx+1)]*[(cosx+2)+(cosx+1)+(-cosx+1)]

    -1=A*[(cosx+1)(-cosx+1)]+B*[(cosx+2)(-cosx+1)]+C*[(cosx+2)(cosx+1)]

    令cosx+1=0,

    cosx=-1,-1=B*[(cosx+2)(-cosx+1)] = B*[1*(1+1)]=2B,B=-1/2;

    令-cosx+1=0,

    cosx=1,-1=C*[(cosx+2)(cosx+1)] = C*[3*(1+1)]=6C,C=-1/6;

    从而,-1/[(cosx+2)*(cosx+1)*(-cosx+1)]看成:

    A/(cosx+2)+(-1/2)/(cosx+1)+(-1/6)/(-cosx+1)

    进而求A,cosx+2∈[1,3],取cosx=0

    A/(2)+(-1/2)/(1)+(-1/6)/(1)=-1/[(cosx+2)*(cosx+1)*(-cosx+1)]=-1/2

    A=1/3

    从而,-1/[(cosx+2)*(cosx+1)*(-cosx+1)]看成:

    (1/3)/(cosx+2)+(-1/2)/(cosx+1)+(-1/6)/(-cosx+1).

    ---注意积分号前面的“ - ”负号.