法一、在Rt△ABC中,∠A<∠B
∵CM是斜边AB上的中线,
∴CM=AM,
∴∠A=∠ACM,
将△ACM沿直线CM折叠,点A落在点D处
设∠A=∠ACM=x度,
∴∠A+∠ACM=∠CMB,
∴∠CMB=2x,
如果CD恰好与AB垂直
在Rt△CMG中,
∠MCG+∠CMB=90°
即3x=90°
x=30°
则得到∠MCD=∠BCD=∠ACM=30°
根据CM=MD,
得到∠D=∠MCD=30°=∠A
∠A等于30°.
法二、∵CM平分∠ACD,
∴∠ACM=∠MCD
∵∠A+∠B=∠B+∠BCD=90°
∴∠A=∠BCD
∴∠BCD=∠DCM=∠MCA=30°
∴∠A=30°