延长CM交⊙O于F
∵AB是圆O的直径
∴AC⊥BD,(那么多相似三角形我不全证了)
∵CE*CF=CD*AC(割线定理),CE=CM-ME,CF=CM+ME
∴(CM-ME)*(CM+ME)=CD*AC,即CM²-ME²=CD*AC
又∵△CDN∽△CMA(因为∠C=∠C,∠CDN=∠CMA)
∴CD:CM=CN:AC,即CM*CN=CD*AC
又∵CM²-ME²=CD*AC(已证)
∴CM*CN=CM²-ME²
即ME²= CM²-CM*CN = CM(CM-CN)=CM*MN
延长CM交⊙O于F
∵AB是圆O的直径
∴AC⊥BD,(那么多相似三角形我不全证了)
∵CE*CF=CD*AC(割线定理),CE=CM-ME,CF=CM+ME
∴(CM-ME)*(CM+ME)=CD*AC,即CM²-ME²=CD*AC
又∵△CDN∽△CMA(因为∠C=∠C,∠CDN=∠CMA)
∴CD:CM=CN:AC,即CM*CN=CD*AC
又∵CM²-ME²=CD*AC(已证)
∴CM*CN=CM²-ME²
即ME²= CM²-CM*CN = CM(CM-CN)=CM*MN