解题思路:根据图示可看出大长方形是由2个边长为b的正方形,1个边长为a的小正方形和3个长为b宽为a的小长方形组成,所以用它的面积的两种求法作为相等关系即可表示为a2+3ab+2b2=(a+2b)(a+b).
a2+3ab+2b2=(a+2b)(a+b).
点评:
本题考点: 因式分解的应用.
考点点评: 主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图形,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.
解题思路:根据图示可看出大长方形是由2个边长为b的正方形,1个边长为a的小正方形和3个长为b宽为a的小长方形组成,所以用它的面积的两种求法作为相等关系即可表示为a2+3ab+2b2=(a+2b)(a+b).
a2+3ab+2b2=(a+2b)(a+b).
点评:
本题考点: 因式分解的应用.
考点点评: 主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图形,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.