a,b,c是三角形ABC的三个角A,B,C所对的边.a^2=b(b+c)是A=2B的________条件.

1个回答

  • 此题为正弦定理的综合应用,要点是角化边或边化角

    具体证明过程如下:

    1.充分性

    因为 A=2B

    所以 sinC=sin(A+B)=sin3B

    所以(sinB+sinC)/sinA=[1-(sinB)^2+3(cosB)^2)]/2cosB=2cosB

    此处用到了正弦三倍角公式:sin3B=-(sinB)^3+3sinB(cosB)^2

    因为 sinA/sinB=2sinBcosB/sinB=2cosB=(sinB+sinC)/sinA

    所以 a/b=(b+c)/a

    所以 a^2=b*(b+c)

    2.必要性

    因为 a^2=b(b+c),s (sinA)^2=(sinB)^2+sinBsin(A+B)

    所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)

    所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)

    此处用到了和差化积的公式:

    sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]

    sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]

    所以 sin(A+B)sin(A-B)=sinBsin(A+B)

    所以 sin(A-B)=sinB

    所以 A=2B

    证明完毕

    希望能够帮到你.