(1)EAF、△EAF、GF;
(2)DE+BF=EF,证明如下:
假设∠BAD的度数为m,将△ADE绕点A顺时针旋转m°得到△ABG, 此时AB与AD重合,
由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
∴点G,B,F在同一条直线上,
∵∠EAF=
,
∴∠2+∠3=∠BAD-∠EAF,
即
,
∵∠1=∠2,
∴∠1+∠3=
,
即∠GAF=∠EAF,
又∵AG=AE,AF=AF,
∴△GAF≌△EAF(SAS),
∴GF=EF,
又∵GF=BG+BF=DE+BF,
∴DE+BF=EF;
(3)当∠B与∠D互补时,可使得DE+BF=EF。