解题思路:先利用换底公式与叠乘法把a1•a2•a3…ak化为log2(k+1);然后根据a1•a2•a3…ak为整数,可得k=2n-1;最后由等比数列前n项和公式解决问题.
an=logn(n+1)=
log2(n+1)
log2n,(n≥2,n∈N*),
∴a1•a2•a3…ak=1×
log23
log22×
log24
log23×
log25
log24×…×
log2(k+1)
log2k=log2(k+1),
又∵a1•a2•a3…ak为整数,
∴k+1必须是2的n次幂(n∈N*),即k=2n-1.
∴k∈[1,2012]内所有的“简易数”的和:
M=(21-1)+(22-1)+(23-1)+(24-1)+…+(210-1)
=
2(1−210)
1−2-10=2036,
故答案为:2036.
点评:
本题考点: 等差数列与等比数列的综合.
考点点评: 本题在理解新定义的基础上,考查换底公式、叠乘法及等比数列前n项和公式,其综合性、技巧性是比较强的.