解题思路:本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,即可求解.
∵AC=6,AB=10,CD是斜边AB上的中线,
∴AD=5,
∵点O是AC中点,点P是CD中点,
∴OP是△CAD的中位线,OC=OA=3,
∴OP=[1/2]AD=2.5,
∵OP<OA,
∴点P在⊙O内,
故选A.
点评:
本题考点: 点与圆的位置关系;勾股定理;三角形中位线定理.
考点点评: 本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.