1.追及和相遇问题
当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题.
2.追及问题的两类情况
(1)速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):
①当两者速度相等时,若两者位移之差仍小于初始时的距离,则永远追不上,此时两者间有 最小 距离.
②若两者位移之差等于初始时的距离,且两者速度相等时,则恰能追上,也是两者相遇时 避免碰撞 的临界条件.
③若两者位移之差等于初始时的距离时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时两者间距离有 一个极大 值.
(2)速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):
①当两者速度相等时有 最大距离 .
②若两者位移之差等于初始时的距离时,则追上.
3.相遇问题的常见情况
(1)同向运动的两物体追及即相遇.
(2)相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇.
重点难点突破
一、追及和相遇问题的常见情形
1.速度小者追速度大者常见的几种情况:
类型
图象
说明
匀加速追匀速
①t=t0以前,后面物体与前面物体间距离增大
②t=t0时,两物体相距最远为x0+Δx
③t=t0以后,后面物体与前面物体间距离减小
④能追及且只能相遇一次
注:x0为开始时两物体间的距离
匀速追匀减速
匀加速追匀减速
2.速度大者追速度小者常见的情形:
类型
图象
说明
匀减速追匀速
开始追及时,后面物体与前面物体间距离在减小,当两物体速度相等时,即t=t0时刻:
①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件
②若Δxx0,则相遇两次,设t1时刻Δx1=x0两物体第一次相遇,则t2时刻两物体第二次相遇
注:x0是开始时两物体间的距离
匀速追匀加速
匀减速追匀加速
二、追及、相遇问题的求解方法
分析追及与相遇问题大致有两种方法,即数学方法和物理方法,具体为:
方法1:利用临界条件求解.寻找问题中隐含的临界条件,例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离.
方法2:利用函数方程求解.利用不等式求解,思路有二:其一是先求出在任意时刻t两物体间的距离y=f(t),若对任何t,均存在y=f(t)>0,则这两个物体永远不能相遇;若存在某个时刻t,使得y=f(t)≤0,则这两个物体可能相遇.其二是设在t时刻两物体相遇,然后根据几何关系列出关于t的方程f(t)=0,若方程f(t)=0无正实数解,则说明这两物体不可能相遇;若方程f(t)=0存在正实数解,则说明这两个物体可能相遇.
方法3:利用图象求解.若用位移图象求解,分别作出两个物体的位移图象,如果两个物体的位移图象相交,则说明两物体相遇;若用速度图象求解,则注意比较速度图线与t轴包围的面积.
方法4:利用相对运动求解.用相对运动的知识求解追及或相遇问题时,要注意将两个物体对地的物理量(速度、加速度和位移)转化为相对的物理量.在追及问题中,常把被追及物体作为参考系,这样追赶物体相对被追物体的各物理量即可表示为:s相对=s后-s前=s0,v相对=
v后-v前,a相对=a后-a前,且上式中各物理量(矢量)的符号都应以统一的正方向进行确定.
三、分析追及、相遇问题的思路和应注意的问题
1.解“追及”、“相遇”问题的思路
(1)根据对两物体运动过程的分析,画出物体的运动示意图.
(2)根据两物体的运动性质,分别列出两物体的位移方程.注意要将两物体运动时间的关系反映在方程中.
(3)由运动示意图找出两物体位移间的关联方程.
(4)联立方程求解.
2.分析“追及”、“相遇”问题应注意的几点
(1)分析“追及”、“相遇”问题时,一定要抓住“一个条件,两个关系”:
“一个条件”是两物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等.
“两个关系”是时间关系和位移关系.其中通过画草图找到两物体位移之间的数量关系,是解题的突破口.因此,在学习中一定要养成画草图分析问题的良好习惯,因为正确的草图对帮助我们理解题意、启迪思维大有裨益.
(2)若被追赶的物体做匀减速运动,一定要注意追上该物体前是否停止运动.
(3)仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,要满足相应的临界条件.
典例精析
1.运动中的追及和相遇问题
【例1】在一条平直的公路上,乙车以10 m/s的速度匀速行驶,甲车在乙车的后面做初速度为15 m/s,加速度大小为0.5 m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次(设两车相遇时互不影响各自的运动).
【解析】设两车速度相等经历的时间为t,则甲车恰能追上乙车时,应有
v甲t- =v乙t+L
其中t= ,解得L=25 m
若L>25 m,则两车等速时也未追及,以后间距会逐渐增大,即两车不相遇.
若L=25 m,则两车等速时恰好追及,两车只相遇一次,以后间距会逐渐增大.
若L180 m
所以两车相撞.
【思维提升】分析追及问题应把两物体的位置关系图(如解析中图)画好.通过此图理解物理情景.本题也可以借助图象帮助理解,如图所示,阴影区是A车比B车多通过的最大距离,这段距离若能大于两车初始时刻的距离则两车必相撞.小于、等于则不相撞.从图中也可以看出A车速度成为零时,不是A车比B车多走距离最大的时刻,因此不能作为临界条件分析.