将方程整理为:
x^3+ax^2+2ax+2x-ax^2-a^2x-2a^2-2a=0
x(x^2+ax+2a+2)-a(x^2+ax+2a+2)=0
(x-a)(x^2+ax+2a+2)=0
于是立即得到方程的第一个根:x-a=0,即x1=a;
由于题目要求有三个整数根,所以a必定是整数.
x^2+ax+2a+2=0,
要使方程有实数根,其判别式
△=a^2-4(2a+2)
=a^2-8a-8
=(a-4)^2-24≥0,
即(a-4)^2≥24,
由于a为整数,得a≥9或a≤-1.
要使方程有整数根,则判别式必须是完全平方数,所以令
△=(a-4)^2-24=M^2,(M为正整数)
即:(a-4)^2-M^2=24
(a-4+M)×(a-4-M)=2×2×2×3
由于(a-4+M)+(a-4-M)=2(a-4),为偶数,所以(a-4+M)、(a-4-M)的奇偶性相同,即同为奇或同为偶,由于它们的乘积为24,偶数,所以它们同为偶,可知(a-4+M)>(a-4-M),所以相应的有以下几种分12×2、6×4、-4×(-6)、-2×(-12);
因此有四种情形:
情形一:
a-4+M=12
a-4-M=2
上两式相加,得:2(a-4)=14,解得:a=11,
上两式相减,得:2M=10,解得M=5,则△=M^2=25;
此时方程三个整数根为:x1=11,x2=-3,x3=-8;
情形二:
a-4+M=6
a-4-M=4
上两式相加,得:2(a-4)=10,解得:a=9,
上两式相减,得:2M=2,解得M=1,则△=M^2=1;
此时方程三个整数根为:x1=9,x2=-4,x3=-5;
情形三:
a-4+M=-4
a-4-M=-6
上两式相加,得:2(a-4)=-10,解得:a=-1,
上两式相减,得:2M=2,解得M=1,则△=M^2=1;
此时方程三个整数根为:x1=-1,x2=1,x3=0;
情形四:
a-4+M=-2
a-4-M=-12
上两式相加,得:2(a-4)=-14,解得:a=-3,
上两式相减,得:2M=10,解得M=5,则△=M^2=25;
此时方程三个整数根为:x1=-3,x2=4,x3=-1;
综上,满足要求的所有实数a的值是:11、9、-1、-3.