解题思路:分别求出各个正多边形的每个内角的度数,只要能够整除360°即可.
正十边行的每个内角是144°,不能整除360°,不能密铺;
正八方形的每个内角是135°,不能整除360°,不能密铺;
正六边形的每个内角是120°,能整除360°,能密铺.
正五方形的每个内角是108°,不能整除360°,不能密铺.
故选C.
点评:
本题考点: 进行简单的合情推理.
考点点评: 本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°