y=1-cos2x+1/sin2x.(x>pi/4 是增函数,X_min in (0,pi/4])
y'=2sin2x-2cos2x/sin^2 2x;
y'=0 iff sin^3 2x=cos 2x,sin^6 2x+sin^2 2x-1=0,2x in(0,pi/2].
求解(零点存在定理与单调性保证了存在唯一解) z^6+z^2-1=0,z in (0,1].
ymax=1+z^7+ z^5
y=1-cos2x+1/sin2x.(x>pi/4 是增函数,X_min in (0,pi/4])
y'=2sin2x-2cos2x/sin^2 2x;
y'=0 iff sin^3 2x=cos 2x,sin^6 2x+sin^2 2x-1=0,2x in(0,pi/2].
求解(零点存在定理与单调性保证了存在唯一解) z^6+z^2-1=0,z in (0,1].
ymax=1+z^7+ z^5