x^2+y^2-2x+6y+16
=x^2-2x+y^2+6y+16
=x^2-2x+1+y^2+6y+9+6
=(x-1)^2+(y+3)^2+6
因为(x-1)^2>=0,(y+3)^2>=0
所以(x-1)^2+(y+3)^2+6>0
即无论x,y为何有理数,多项式x^2+y^2-2x+6y+16的值恒为正数
x^2+y^2-2x+6y+16
=x^2-2x+y^2+6y+16
=x^2-2x+1+y^2+6y+9+6
=(x-1)^2+(y+3)^2+6
因为(x-1)^2>=0,(y+3)^2>=0
所以(x-1)^2+(y+3)^2+6>0
即无论x,y为何有理数,多项式x^2+y^2-2x+6y+16的值恒为正数