y=x/(1-x)=-[x/(x-1)]=-[(x-1+1)/(x-1)]=-[1+1/(x-1)]=-1-1/(x-1)
设任意的x1、x2≠1,且x1>x2
则有f(x1)-f(x2)=-1-1/(x1-1)+1+1/(x2-1)=1/(x2-1)-1/(x1-1)=(x1-x2)/(x2-1)(x1-1)
可由x1>x2 x1-x2>0
则可知当x1>x2>1或1>x1>x2时,y=f(x)单调递增
即递增区间为(负无穷,1)和(1,正无穷)
y=x/(1-x)=-[x/(x-1)]=-[(x-1+1)/(x-1)]=-[1+1/(x-1)]=-1-1/(x-1)
设任意的x1、x2≠1,且x1>x2
则有f(x1)-f(x2)=-1-1/(x1-1)+1+1/(x2-1)=1/(x2-1)-1/(x1-1)=(x1-x2)/(x2-1)(x1-1)
可由x1>x2 x1-x2>0
则可知当x1>x2>1或1>x1>x2时,y=f(x)单调递增
即递增区间为(负无穷,1)和(1,正无穷)