计算二重积分∫∫D根号(4-x²-y²)dxdy,其中D为以X的平方+Y的平方=2X为边界的上半圆域

2个回答

  • x = rcosθ,y = rsinθ

    x² + y² = 2x

    (rcosθ)² + (rsinθ)² = 2rcosθ

    r²(cos²θ + sin²θ) = 2rcosθ

    r = 2cosθ

    ∫∫_D √(4 - x² - y²) dxdy

    = ∫(0,π/2) ∫(0,2cosθ) √(4 - r²) * r drdθ

    = (- 1/3)∫(0,π/2) (4 - r²)^(3/2) |(0,2cosθ) dθ

    = (- 1/3)∫(0,π/2) [(4 - 4cos²θ)^(3/2) - (4 - 0)^(3/2)] dθ

    = (- 8/3)∫(0,π/2) |sinθ|³ dθ + (8/3)∫(0,π/2) dθ

    = (- 8/3)∫(0,π/2) sin³θ dθ + (8/3)(π/2 - 0)

    = (- 8/3)∫(0,π/2) sin²θ d(- cosθ) + 4π/3

    = (8/3)∫(0,π/2) (1 - cos²θ) d(cosθ) + 4π/3

    = (8/3)[cosθ - (1/3)cos³θ] |(0,π/2) + 4π/3

    = (8/3)(0 - 2/3) + 4π/3

    = (4/9)(3π - 4) ≈ 2.41101