设抛物线y^2=4x的焦点为F,其准线方程与x轴交于点C,过点F作它的弦AB,若角CBF=90度,则|AF|-|BF|的

2个回答

  • 设AB方程为:y=k(x-p/2)(假设k存在)

    联立得k^2(x^2-px+p^2/4)=2px

    (k^2)x^2-(k^2+2)px+(kp)^2/4=0

    设两交点为A(x1,y1),B(x2,y2),

    ∠CBF=90°即(x1-p/2)(x1+p/2)+y1^2=0

    x1^2+y1^2=p^2/4

    x1^2+2px1-p^2/4=0

    (x1+p)^2=(5/4)p^2

    x1=(-2+√5)p/2或(-2-√5)p/2(舍)

    ∴A((-2+√5)p/2,√(-2+√5)p)

    |AC|=√{[(1+√5)/2]^2+(-2+√5)}p=√[(-1+√5)/2]p

    |AF|=√{[(-3+√5)/2]^2+(-2+√5)}p=√[(3-√5)/2]p==(-1+√5)p/2

    ∵ΔCAF∽ΔBAC,故|AB|/|AC|=|AC|/|AF|

    ∴|AB|=|AC|^2/|AF|=p

    ∴|BF|=|AB|-|AF|=(3-√5)p/2

    |AF|-|BF|=4p/2

    AF-BF=2P