已知直线L:y=k(x+2*根号2)与圆O:x^2+y^2=4相交于A,B两点,求当三角形ABO面积取最大值时,直线L的

1个回答

  • 设A(x1,y1),B(x2,y2)

    联立L与圆的方程

    y=k(x+2√2)

    x²+y²=4

    消去y:

    (1+k²)x²+4√2k²x+8k²-4=0

    Δ=(4√2k²)²-4(8k²-4)(1+k²)

    =16-16k²≥0

    故-1≤k≤1

    由韦达定理:

    x1+x2=-4√2k²/(1+k²)

    x1x2=(8k²-4)/(1+k²)

    |AB|²=(x1-x2)²+(y1-y2)²

    =(1+k²)(x1-x2)²

    =(1+k²)[(x1+x2)²-4x1x2]

    =(1+k²)[32k^4/(1+k²)²-4(8k²-4)/(1+k²)]

    =16(1-k²)/(1+k²)

    O到L的距离d=|2√2k|/√(1+k²)

    故三角形ABO面积=d*AB/2

    =2|2√2k|√(1-k²)/(1+k²)

    =4√2√[(1-k²)k²/(1+k²)²]

    令y=[(1-k²)k²/(1+k²)²]

    令k²=t

    故y=[(1-t)t/(1+t)²]

    =(-t²+t)/(t²+2t+1)

    =-1+(3t+1)/(t²+2t+1)

    =-1+3(t+1/3)/(t²+2t+1)

    再利用这种方法,知道

    t=1/3时,y有最大值

    此时即k²=1/3

    故k=±√3/3

    故L:y=k(x+2√2)