设z=x+yi(x,y∈R,
∴z+2i=x+(y+2)i,
∵z+2i是实数,
∴y+2=0,解得y=-2,
又
z
2-i =
x+yi
2-i =
(x+yi)(2+i)
(2-i)(2+i) =
2x-y
5 +
x+2y
5 i ,
∵
z
2-i 是实数,
∴
x+2y
5 =0,解得x=-2y=4,
∴z=4-2i.
.
z =4+2i,
∴ω=z 2+3
.
z -4=(4-2i) 2+3(4+2i)-4
=12-16i+12+6i-4
=20-10i.
设z=x+yi(x,y∈R,
∴z+2i=x+(y+2)i,
∵z+2i是实数,
∴y+2=0,解得y=-2,
又
z
2-i =
x+yi
2-i =
(x+yi)(2+i)
(2-i)(2+i) =
2x-y
5 +
x+2y
5 i ,
∵
z
2-i 是实数,
∴
x+2y
5 =0,解得x=-2y=4,
∴z=4-2i.
.
z =4+2i,
∴ω=z 2+3
.
z -4=(4-2i) 2+3(4+2i)-4
=12-16i+12+6i-4
=20-10i.