一道求截面面积的立体几何题正四棱锥的底面积为S,用平行于底面的截面截棱锥,把它分成体积相等的两个部分,则截面面积为

1个回答

  • 设正四棱锥的高h,底面边长a,则体积a²h/3,

    设截得正四棱锥高c,底面边长b,则体积b²c/3

    由已知,a²h/3=2b²c/3,∴a²h=2b²c.

    根据相似三角形的比例关系:

    h∶c=a∶b,∴c=bh/a,代入a²h=2b²c得

    a^3=2b^3,再由a²=S,

    ∴截面面积b²=S/[4^(-3)].