首先画出积分区域,
x的取值范围是1/y到y,
而y的取值范围是1到2,
所以
∫∫D xy dxdy
=∫(上限2,下限1) y*dy ∫ (上限y,下限1/y) x*dx
显然
∫ (上限y,下限1/y) x*dx
= x²/2 (代入上限y,下限1/y)
=y²/2 -1/(2y²)
那么
∫∫D xy dxdy
=∫(上限2,下限1) y*[y²/2 -1/(2y²)]dy
=∫(上限2,下限1) [(y^3)/2 -1/2y]dy
=(y^4)/8 - (lny)/2 代入上限2,下限1
=15/8-1/2*ln2