f(x)=2(1-cos2x)/2+√3(sin2x)+1
=√3sin2x-cos2x+2
=2sin2xcosπ/6-2cos2xsinπ/6+2
=2(sin2xcosπ/6-cos2xsinπ/6)+2
=2sin(2x-π/6)+2
所以T=2π/2=π
增函数时2kπ-π/2
f(x)=2(1-cos2x)/2+√3(sin2x)+1
=√3sin2x-cos2x+2
=2sin2xcosπ/6-2cos2xsinπ/6+2
=2(sin2xcosπ/6-cos2xsinπ/6)+2
=2sin(2x-π/6)+2
所以T=2π/2=π
增函数时2kπ-π/2