只要证明a1^2+a2^2+a3^2+…+an^2+…
求证:a1∧2+a2∧2+a3∧2+a4∧2+…+an∧2<33/20 a1=1 an=1/n
2个回答
相关问题
-
a1=1/2 a1+a2+a3+…an=n2an,求证:an=1/n(n+1)
-
数列{an}满足a1=1,1/2an=1/2an+1(n∈N※),若a1a2+a2a3+...+anan+1>16/33
-
an=4/(2n-1)^2 求证a1+a2+a3+...+ak
-
在数列{an}中,a1=1/2,a(n+1)=3an/an+3,求证(a1)/3+(a2)/3+...+an/3≥2n/
-
已知an=1-1/4^n,求证a1a2...an>2/3
-
已知AN=2N 求证:1/A1^2 + 1/A2^2 + 1/A3^2 +.1/AN^2
-
a(n+1)=4an-4a(n-1)∴a(n+1)-2an=2[an-2a(n-1)]又bn=a(n+1)-2an
-
求证a1*a2*a3*a4.*an≥根号2n+1
-
已知An=2A(n-1)+2^n-1(n≥2)a1=5 a2=13 a3=33 a4=81.{(An+α)/2^n}为等
-
数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证