(Ⅰ)∵ 2 a n S n -
a 2n =1
当n≥2时, 2( S n - S n-1 ) S n -( S n - S n-1 ) 2 =1 ,
整理得,
S 2n -
S 2n-1 =1 (n≥2),(2分)
又
S 21 =1 ,(3分)
∴数列 {
S 2n } 为首项和公差都是1的等差数列.(4分)
∴
S 2n =n ,又S n>0,∴ S n =
n (5分)
∴n≥2时, a n = S n - S n-1 =
n -
n-1 ,
又a 1=S 1=1适合此式(6分)
∴数列{a n}的通项公式为 a n =
n -
n-1 (7分)
(Ⅱ)∵ b n =
2
4
S 4n -1 =
2
(2n-1)(2n+1) =
1
2n-1 -
1
2n+1 (8分)
∴ T n =
1
1×3 +
1
3×5 +…+
1
(2n-1)(2n+1)
= 1-
1
3 +
1
3 -
1
5 +…+
1
2n-1 -
1
2n+1
= 1-
1
2n+1 =
2n
2n+1 (10分)
∴ T n ≥
2
3 ,依题意有
2
3 >
1
6 ( m 2 -3m) ,解得-1<m<4,
故所求最大正整数m的值为3(12分)