解由奇函数且定义在(-1,1)
则f(0)=0
即a×0+b=0
解得b=0
故f(x)=(ax)/(x²+1)
又由f(1/2)=2/5
即(1/2a)/(1/4+1)=2/5
即1/2a=5/4×2/5=1/2
即a=1
故f(x)=x/(x^2+1)
该函数在(-1,1)上是增函数,
由于边界不能取到±1,知函数无最大值也无最小值.
解由奇函数且定义在(-1,1)
则f(0)=0
即a×0+b=0
解得b=0
故f(x)=(ax)/(x²+1)
又由f(1/2)=2/5
即(1/2a)/(1/4+1)=2/5
即1/2a=5/4×2/5=1/2
即a=1
故f(x)=x/(x^2+1)
该函数在(-1,1)上是增函数,
由于边界不能取到±1,知函数无最大值也无最小值.