你可以设AC与DN的交点为E,连结DM,EM,可证得四边形ADME是菱形,
由ME平行于AB可得:MN/BN=ME/BD=AD/BD,由DM平行于AC可得:BD/AB=DM/AC,
所以,BD/(AB-BD)=DM/(AC-DM)
=DM/(AC-AE)
即 BD/AD=DM/EC=MN/CN,
所以,AD/BD=CN/MN,
所以,MN/BN=CN/MN
所以,MN*MN=BN*CN
你可以设AC与DN的交点为E,连结DM,EM,可证得四边形ADME是菱形,
由ME平行于AB可得:MN/BN=ME/BD=AD/BD,由DM平行于AC可得:BD/AB=DM/AC,
所以,BD/(AB-BD)=DM/(AC-DM)
=DM/(AC-AE)
即 BD/AD=DM/EC=MN/CN,
所以,AD/BD=CN/MN,
所以,MN/BN=CN/MN
所以,MN*MN=BN*CN