证明:
∵AE⊥CD于E
∴∠EAC+∠ECA=90°=∠ECA+∠FCB
∴∠EAC=∠FCB
∵∠BFC=∠CEA=90°,AC=BC
∴△AEC≌△CFB
∴EC=FB
又∵∠BDF=∠CDH,∠CDH+∠DCG=∠DCG+∠CGE=90°
∴∠CGE=∠BDF
∴△CGE≌△BDF
∴BD=CG
证明:
∵AE⊥CD于E
∴∠EAC+∠ECA=90°=∠ECA+∠FCB
∴∠EAC=∠FCB
∵∠BFC=∠CEA=90°,AC=BC
∴△AEC≌△CFB
∴EC=FB
又∵∠BDF=∠CDH,∠CDH+∠DCG=∠DCG+∠CGE=90°
∴∠CGE=∠BDF
∴△CGE≌△BDF
∴BD=CG