设:z=a+(√3/2)i
|z|=√[a^2 + (√3/2)^2] =1
a=±1/2
z=1/2 + (√3/2)i 或 z=-1/2 + (√3/2)i
z / (z^2 + 1) =[1/2 + (√3/2)i] / {[1/2 + (√3/2)i]^2 + 1} = [1/2 + (√3/2)i] / [1/4 + (√3/2)i - 3/4 + 1]
=[1/2 + (√3/2)i] / [1/2 + (√3/2)i]=1
或 z / (z^2 + 1) = -1
设:z=a+(√3/2)i
|z|=√[a^2 + (√3/2)^2] =1
a=±1/2
z=1/2 + (√3/2)i 或 z=-1/2 + (√3/2)i
z / (z^2 + 1) =[1/2 + (√3/2)i] / {[1/2 + (√3/2)i]^2 + 1} = [1/2 + (√3/2)i] / [1/4 + (√3/2)i - 3/4 + 1]
=[1/2 + (√3/2)i] / [1/2 + (√3/2)i]=1
或 z / (z^2 + 1) = -1