f(x)=2cos2x+sin^2x
=2(1-2sin^2x)+sin^2x
=2-4sin^2x+sin^2x
=-3sin^2x+2
(1)f(π/3)=-3sin^2(π/3)+2
=-3×(3/4)+2
=-1/4
(2)当sin^2x=0时,f(x)有最大值2
当sin^2x=1时,f(x)有最小值-1
f(x)=2cos2x+sin^2x
=2(1-2sin^2x)+sin^2x
=2-4sin^2x+sin^2x
=-3sin^2x+2
(1)f(π/3)=-3sin^2(π/3)+2
=-3×(3/4)+2
=-1/4
(2)当sin^2x=0时,f(x)有最大值2
当sin^2x=1时,f(x)有最小值-1