(1)3a(n+1)^2-3=2an^2-2a(n+1)^2-1=2/3(an^2-1)a1=1?an=1如果a1=k不等于1令bn=an^2-1则b1=k^2-1b(n+1)=2/3bnbn=b1(2/3)^(n-1)=(k^2-1)*(2/3)^(n-1)an=√[(k^2-1)*(2/3)^(n-1)+1](2)1/√n+√(n+1)= √(n+1)-√na(n+1)...
(1)3a(n+1)^2-3=2an^2-2a(n+1)^2-1=2/3(an^2-1)a1=1?an=1如果a1=k不等于1令bn=an^2-1则b1=k^2-1b(n+1)=2/3bnbn=b1(2/3)^(n-1)=(k^2-1)*(2/3)^(n-1)an=√[(k^2-1)*(2/3)^(n-1)+1](2)1/√n+√(n+1)= √(n+1)-√na(n+1)...