1,X=lnt,那么dx=(1/t)dt,dt/dx=t
dy/dx=(dy/dt)/(dt/dx)=t(dy/dt)
d^2y/dx^2-dy/dx+ye^2x=0
d(dy/dx)/dx-dy/dx+ye^2x=0
d(t(dy/dt))/dx-t(dy/dt)+yt^2=0
t^2(d^2y/dt^2)+t(dy/dt)-t(dy/dt)+yt^2=0
t^2(d^2y/dt^2)+yt^2=0
(d^2y/dt^2)+y=0
2,设f(x)=sin(x/2)-x/π,(0
1,X=lnt,那么dx=(1/t)dt,dt/dx=t
dy/dx=(dy/dt)/(dt/dx)=t(dy/dt)
d^2y/dx^2-dy/dx+ye^2x=0
d(dy/dx)/dx-dy/dx+ye^2x=0
d(t(dy/dt))/dx-t(dy/dt)+yt^2=0
t^2(d^2y/dt^2)+t(dy/dt)-t(dy/dt)+yt^2=0
t^2(d^2y/dt^2)+yt^2=0
(d^2y/dt^2)+y=0
2,设f(x)=sin(x/2)-x/π,(0